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Global properties of the Born-Oppenheimer  energy expectation value func- 
tional, defined over the nuclear configuration space R, are analyzed. Quantum 
chemical reaction graphs and reaction networks are defined in terms of 
intersection graphs of connected sets of nuclear geometries, representing 
various chemical structures. The set of all possible reaction mechanisms on 
the given energy hypersurface and the associated activation energy conditions 
are analyzed using reachability matrices defined over digraphs Ds(A) and 
D'(A, E).  
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1. Introduction 

Potential energy hypersurfaces are of fundamental importance in the analysis 
of chemical reactions and conformational changes. Whereas thousands of studies, 
both experimental and theoretical, have been reported in recent years on local 
analysis of potential surfaces of various molecular systems, only very few studies 
have been carried out to date on the global topological properties of potential 
surfaces of polyatomic molecules [1-4]. Recent  topological analysis of potential 
energy hypersurfaces resulted in consistent quantum-mechanical definitions of 
molecular structure and reaction mechanism [2-4]. Based on the topological 
properties of the energy hypersurface E, equivalence classes of nuclear 
geometries are defined on the nuclear configuration space R which lead to 
topologizations of both R and E. Chemical structures and reaction mechanisms 
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are defined as open sets of the resulting (R, Tc) topological space [4]. Based 
upon this topology, a neighbour relation is introduced for critical points of the 
energy hypersurface E. In the present study we shall consider a selected subset 
of the topological properties of the energy hypersurface leading to a subsequent 
level of abstraction: to reaction networks and graphs. In order to generate a 
complete reaction network of the hypersurface we shall utilize the above men- 
tioned neighbour relation as applied to various pointed open sets of the 
topological space (R, Tc). 

Theoretical studies on chemical reaction networks may, in principle, lead to the 
determination of all possible reaction mechanisms for a given overall chemical 
process. In particular, theoretical models may aid the development of computer 
assisted methods for organic synthesis design. In many of these studies [5-12], 
the initial data on some of the possible reaction pathways, individual synthetic 
steps and intermediate species have been assumed to be given as experimental 
information, although for a partial analysis symmetry relations and quantum 
chemical results have also been utilized [13-17]. 

In the quantum mechanical model the nuclear configuration space R is assumed 
to be provided with a metric p. The e-neighbourhoods of points r ~ R define 
the metric topology T in this metric. (Throughout this study the same notations 
will be used as in Refs. [2-4]. An introduction to the topological concepts used 
in this work may be found in Refs. [3, 4, 18-20].) Since the energy hypersufface 
E, defined over R, is bounded from below, all steepest descent paths on E must 
terminate either at a critical point rc ~ R, or at a point re  Dexc~. Here Dexd is 
the union of neighbourhoods of all points where the energy hypersurface E is 
a poor approximation to the energy expectation value [2-3]. 

To each non-critical point r ~ R, r ~ D~xd, a steepest descent path P, is assigned. 
The r origin points are ordered into equivalence classes according to the 
extremities of the P, paths. For extremity r~ ~ the equivalence class has been 
defined [3] as the catchment region 

C r~) ={r~ ~, r, r: r~  ~ P,} (1) 

and for extremities in D~xc, a single such catchment region has been given: 

Cboxo' = {r, r: P,r~D~xr # | (2) 

These catchment regions generate a unique partitioning of the nuclear configur- 
ation space R, by 

R = U c ' ~  u C~o-ol u .boxd. (3) 
I 

Catchment regions appearing in the union of Eq. (3) and their T-closures form 
a generating subbase for a unique topology Tc on the nuclear configuration 
space R [3-4]. Chemical structure is defined as an open set C "~ of topological 
space (R, Tc). Similarly, elementary and complex reaction mechanisms are 
defined as open sets of (R, Tc) [4]. The above topological definitions express 
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the fact that molecules are inherently topological objects rather than geometrical 
entities. In a topological model, the precise geometrical arrangement of the 
nuclei is irrelevant (topology ~ "rubber geometry") and the concept of distance 
is of no importance. Nearness and connectedness, neighbourhoods and continuity 
are the primary concepts of topology. These are precisely the concepts of primary 
importance to molecular behaviour on the microscopic level, since even in 
semi-classical treatments of molecular motion (e.g. vibrational analysis) an open 
set of nuclear geometries must be considered and no molecule can exist with 
any fixed nuclear geometry for any length of time. A purely quantum mechanical 
model goes even beyond this, since nuclei, just as electrons, are described by 
probability distributions, which clearly favour a topological model over a 
geometrical one. 

The topological model of chemical structures and reaction mechanisms circum- 
vents the fundamental incompatibility of geometrical models of molecules with 
the Heisenberg uncertainty principle, since points of R, representing rigid nuclear 
geometries, are replaced by open sets of R. The definition of "reaction topology" 
is based upon the properties of the Born-Oppenheimer energy functional [4]. 
Consequently, the generalization of reaction topology, the proposed theory of 
reaction networks is also inherently quantum-mechanical since it is also based 
on an observable, energy, and on the corresponding expectation value functional. 

In a previous extension of the topological model, local coordinate systems and 
metrization have been re-introduced into open sets of topological space (R, Tc) 
in a special way, leading to a manifold theoretical model of energy hypersurfaces 
[4]. In the present work we start again with the topological model; metric, 
however, will be re-introduced only on reaction graphs and reaction networks 
as distance of vertices. The reaction graphs will be defined as intersection graphs 
for a subset of the generating subbase for topology Tc, and their subgraphs. The 
relations between various models of potential energy hypersurfaces are shown 
in Fig. 1. 

ABSTRACTION 

GEOMETRICAL MODEL: OPEN SETS: [ TOPOLOGICAL MODEL: I INTERSEGTIONGRAPHS 
NUCLEAR GEOMETRY ~ REACTION TOPOLOGY 

M,TR,C SPACE I I TOPOLOO'CAL SPACE I 

LOCAL 
J COORDINATE 

,~ SYSTEMS 
MANIFOLD MODEL : 

TOPOLOGICAL MANIFOLDS 

I NETWORK MODEL: 
REACTION NETWORKS 

GRAPH THEORY 

Fig. 1. Interrelations between geometrical, topological, manifold, and graph theoretical models of 
potential energy hypersurfaces 
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Network theory and graph theory appear especially suitable for the analysis of 
the most essential features of a topological model of energy hypersurfaces. In 
this study we shall present such an analysis. For concepts and definitions of 
graph theory the reader should consult references [21, 22]. A sample of selected 
chemical applications of graph theory is discussed in the work by Randi~ [23] 
and in Refs. [24, 25]. 

2. Pointed Sets of the Nuclear Configuration Space R and Reaction 
Networks 

In order to reduce the topological model (R, Tc) of R to a graph, preserving 
the most essential information on the chemically important features of the energy 
expectation value functional, we shall utilize neighbour relations of catchment 
regions and the properties of mapping rl(r) [4]. To each non-critical point r ~ R 
the mapping r/(r) assigns the extremity rE of steepest descent path Pr: 

n (r) = rE (P,). (4) 

By virtue of r/(r) each catchment region C r~ (Eq. (1)) is a pointed set with 
distinguished element r~ ), the critical point in the catchment region. The neigh- 
bour relation which has been proposed for the catchment regions [3] defines a 

. . . . . . . .  (1) r~  nelghbour relaUon for the dlstmgmshed elements (crmcal points) rr  ~ C and 
r~ ') ~ cr(~): 

1 i f C ' ~ ) c ~ C r ~ # Q ,  I#1' 
N(r~)' r~')) = 0 otherwise, (5) 

where the closure refers to the metric topology T on R [4]. 

In general, the excluded domain D~xcl may be disconnected, then Dexci is not a 
proper domain in the topological sense. In such a case, a unique partitioning of 

n(d) which are the D,x~l may be given in terms of disjoint connected subsets . . . .  1 
maximum connected components of Dex~l: 

Dexd -- L I D ca) - ~_; ~xo,. (6) 
d 

Here 

D(d) nD(d') excl excl = Q if d # d' (7) 

and each D <d) is connected. excl 

Partitioning (6) of De~a implies a partitioning of C b~ by  

C ~ ..... LJ c -~%', (8) 

where each C b~]d is the union of all origin points from where the steepest descent 
r~(d) paths leads into . . . .  i. 

~ ( d )  One may designate one point, r~  ~, in each Ll~xr as the distinguished element, 
and formally regard the union 

c r ( d )  (d) -cat o = Do.~l u C D .... (9) 
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as the catchment region for r~  ). The mapping 7/ may_ then be extended from 
R\(Cl~~ Dent1) to R by defining n (r) for every r e C Dexc' w Dexd as 

n (r) = r~  ~ (10) 

where 
r (d )  r e  C D c D~xclU C D e x c l .  (11) 

The neighbour relation (5) may also be extended to these r~  ) points by 

{10 �9 -r"~ -~i~ N(r~), r~!) = l f C ~ c ~ C ~ ' # Q ,  i # j  (12) 
otherwise, 

where E, E ' =  D or C. 

In this study, we shall assume that topological space (R, To) is defined in terms 
r (1) r (d)  

of all C ~ catchment regions that is, sets C D and their T-closures are also 
elements of the defining subbase of Tc [4]. The subset of T-closed elements of 
the defining subbase may then be used for the definition of the reaction graph 
G as an intersection graph. More explicitly, by taking all distinguished elements 
as the vertex set V and all vertex pairs with a non-zero neighbour relation as 
the edge set E, we may define the reaction graph G of the potential energy 
hypersurface E:  

V(G) = {r~)/, (13) 

E(G) ={(r~ ), rE,(i')~, : N(r~), r~')) = 1}. (14) 

Graph G has several equivalent interpretations. Vertex set V may be interpreted 
as the family of catchment regions, 

V(G) = {C G'} (13a) 

and the edge set E as the set representing neighbour relations of the catchment 
regions themselves, 

r ( i )  r ( i ' )  - - r ( i )  --  i.(i') 
E(G) = {(CE,  CE, ) : CE c~ CE, # 0} .  (14a) 

By using the terminology of Thom's catastrophe theory [26], as applied to the 
stability of function rl : R ~ R, the {C G)  catchment regions are the basins associ- 
ated with critical point attractors {r~ )} [3] and attractors {r~)}. The vertex set 
V(G) of the reaction graph G is the reduction of the nuclear configuration space 
R to a discrete set of the attractors. The edge set E(G) represents the neighbour 
relations between these attractors. 

To facilitate the chemical interpretation of the results, we shall adopt the 
r (~ .k )  

following terminology: an open set C , where critical point index A is also 
r (d) 

specified, or a set C/~ will be referred to as chemical structure. A structure 
C r~~ with A = 0, will be called a molecule. A structure C '~'k~, with 2t = 1, will 

r(X,k) r (i) 
be referred to as transition structure. Each structure C , or C ~ can be 
represented by the corresponding distinguished geometry r (x'k) or r~ ). It is evident 
that graph O may be interpreted in chemical terms either as one describing the 
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neighbour relations between chemical structures or one describing neighbour 
relations between distinguished geometries. Whenever the interpretation is of 
no immediate concern, i.e. when purely graoh theoretical relations will be 
considered, r~ ~ r~'~ in Eqs. (13) and (14) (and C E in Eqs. (13a) and (14a)) will be 
replaced by general vertex symbol v~. 

In an earlier graph theoretical representation of multidimensional potential 
surfaces [27], the vertex set has been chosen similarly, as the set of critical points, 
which is a subset of V(G).  However, an edge set has been given using a different 
criterion, based upon a one dimensional ordering of vertices. Although the 
assumption in Ref. [27], that all equipotential contours are homeomorphic to 
circles or hyperspheres, is not generally valid for an arbitrary energy hypersurface, 
nevertheless, a somewhat modified construction for an edge set may be given 
which leads to similar graphs. This particular edge set may be defined by regarding 
precisely those vertices v~ and vj interconnected by an edge which are not 
separated by an equipotential contour hypersurface containing another vertex 
vk. Such a graph, may be derived from G as a special case of subgraph, which 
contains less information about the energy surface E than does G itself. 

Energy relations between various distinguished points of R, together with graph 
G, define a digraph D where each edge ek(t)i, /)i)E E(G) ,  [vi, vj ~ V(G)] is given 
the direction of non-increasing energy. That is, by interpreting vertices as the 
distinguished points, for the arc v~vj of D, 

E(v~) >- E(v~). (15) 

If the equality holds in Eq. (15), then we shall assume two arcs, one from v~ to 
v i and one from vi to v~. The arcs of digraph D may be labeled by the non-negative 
energy difference AEij, 

AEii = E(vi) - E(vj). (16) 

The labeled digraph D will be referred to as reaction network. 

For the purposes of a detailed analysis, the neighbour relation (12) is much too 
general, and it is useful to introduce the concept of strong neighbour. Chemical 

(1) r(i) . 
structure C 'E is a strong neighbour of chemical structure C ~ if 

d r~3 f~ Cr~ , ~ ~ .  (17) 

The implied strong neighbour relation for the distinguished elements is defined 
by 

NS(r~),r~))=fl  i f e ' ~ ' c ~ c r ~ ' ~ Q ,  i S ~  (18) 
otherwise. 

Note that the strong neighbour relation is not symmetric, in contrast to the 
neighbour relation, which is symmetric. It is possible that an r~ "k) critical point 
is an element of the closure of catchment region for another r~ '~ critical point, 

r~ ,k) ~ C r~'/), (19) 
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nevertheless, relation (17) does not hold if indices k and l are interchanged. 
C,~.,, t-.k, Chemical structure is a strong neighbour of C c ,  but the latter is not a 

strong neighbour of the former. Saddle points of the model surface shown in 
Fig. 4, Ref. [28], are examples for such a relation. It is also clear, that the strong 
neighbour relation implies the neighbour relation, but not vice versa. 

Note that both the neighbour and the strong neighbour relations can be expressed 
by intersections involving open sets of the (R, Tc) topological space, that is, both 
relations are topological in (R, Tc). 

A symmetric variant of the strong neighbour relation, the s-neighbour relation, 
may be defined as 

v,)=Ilf~ ifNS(vi'  v,)+N~(v,, vi)>-i ~(v,, otherwise, (20) % v  

that is, ~ rs is 1 if either of the two vertices is a strong neighbour of the other. 

Graph G s and digraph D s are defined by vertex set (13), 

V ( G  s) = V(G)  (21) 

and by edge set E ( G  s) where neighbour relation N is replaced by the symmetric 
strong neighbour relation ~ rs in Eq. (14). For digraph D s directions (and labels) 
are given by the same relations, (15) and (16), as for digraph D. Since 

E ( G  ~) ~ E(G) ,  (22) 

it is clear that G * and D s are subgraphs of O and D, respectively. Note that in 
r(c0,k) r(O, ') 

the typical case of two molecules, C and C c ,  separated by a transition 
r (1 , / )  

structure C c , all three structures are pairwise neighbours, that is, the corres- 
ponding three edges are all elements of E(G),  

e(Vk, Vl), e(Vk, Vj), e(vl, Vj)~ E(G).  (23) 

However, neither of the two molecules is a strong neighbour of the other, and 
only two of the above edges are in E(GS): 

e(vk, vi), e(vl, v i) c E ( G  ~) (24) 

e(vk, V~) ~ E(  GS). (25) 

Consequently, graph G s [digraph D ~] is a proper subgraph of graph G [digraph 
D, respectively]. 

Neighbour relation matrix N and strong neighbour relation matrix N (s) for the 
distinguished geometries (and equivalently for chemical structures) are 
defined by 

Nii= N(r~ ~, r~ )) (26) 

and 

N(S~ = N(S)(r~), r~)), (27) q 
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Fig. 2. Part of a model surface showing critical 
points r (x'i) equipotential contours, and catch- 
ment regions C "(x'i~ 

respectively. Note that N is symmetric whereas N (s~ is not in general symmetric 
matrix. It is evident that N is nothing else but the adjacency matrix A(G) for 
vertices of G, 

N = A(G).  (28) 

Matrix N ~>, however, is not in general equal to the adjacency matrix A (G  S) 
of G~: 

N (~> # A(G'). (29) 

Nevertheless, A(GS), (which is identical to 1~ (s)) may be obtained from N (~) by 

A I j ( G  ~) �9 (~) ~r(.:) = sign (Nij + , . ,  ). (30) 

In Fig. 2, a part of a two dimensional model surface is shown. Boundaries of 
catchment regions are shown by heavy lines. Some of these lines are themselves 
one dimensional catchment regions for saddle points. Note, however, that catch- 
ment region C rr of saddle point r (1'4~ has a non-empty two dimensional interior, 
The catchment regions for maxima are one-point sets [3]. For the distinguished 
elements shown in Fig. 2 the neighbour relation matrices are 

N =  

0 1 1 1 1 1 1 0 

1 0 1 1 1 1 1 1 

1 1 0 1 1 0 1 1 

1 1 1 0 1 1 1 0 

1 1 1 1 0 0 1 1 

1 1 0 1 0 0 0 0 

1 1 1 1 1 0 0 0 

0 1 1 0 1 0 0 0 
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0 0 0 1 0 1 1 0 

0 0 0 1 1 1 1 1 

0 0 0 0 1 0 1 1 

0 0 0 0 0 1 1 0 
N (s) = 

0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

and 

0 0 0 1 0 1 1 0 

0 0 0 1 1 1 1 1 

0 0 0 0 1 0 1 1 

1 1 0 0 0 1 1 0 
1~ (s) = 

0 1 1 0 0 0 1 1 

1 1 0 1 0 0 0 0 

1 1 1 1 1 0 0 0 

0 1 1 0 1 0 0 0 

Adjacency matrices A(D) and A(D s) for digraphs D and D '  are given by 

A , ( D )  = A i i (O) .  p ,  (31) 

and 

A . ( D ' )  = Aq(GS) �9 p,. (32) 

respectively, where p ,  is defined in terms of condition (15): 

{ ;  ifE(v~)>-E(v,)  
Pij = otherwise. (33) 

Graph G(A) is defined as the subgraph of G. obtained by eliminating all vertices 
�9 1-(d) r ( h , k )  

corresponding to catchment regions C D and to all chemical structures C c 
where h > h. Expressed in terms of distinguished geometries, 

V(G(A)) = {r~"k): h'----- A} (34) 

and 

E(G(A)) ={(r~ ''k) , r~ ''/)) :A', A"-< A, N( r~  ''k), r~ ''`)) = 1}. (35) 

For sake of notational convenience we shall use the G(n + 1) symbol for G itself�9 
Note that V(G(n) )  contains all critical points as vertices, but none of the r~  ) 
distinguished geometries, consequently G(n)  ~ G whenever Dexcl # Q .  Graphs 
G~(A) and digraphs D(A) and D ~(A), which are subgraphs of G s, D and D s, 
respectively, are defined analogously. In Fig. 3 subgraphs of reaction graph G 
of model surface given in Fig. 2 and some of the associated G(A) and GS(h) 
graphs are shown�9 
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G=G(3)= G ( 2 ) I ~ V ~ I  Gs(2) 
VI ~ V7 ~ V 3 

G{I) / V'{vV5 \ GS(I) 
Vl ~ V3 

V2 

G(O) / " ~  GS(o) 
vl ~ . / V 3  

V I V7 V3 

v4 ~v2~ v~ 

v~ / ~v3 
vz 

V I V3 

Fig. 3. Subgraphs of reaction graph G and graphs G(1), G(0), GS(2), GS(1) and GS(0) of model 
surface shown in Fig. 2 

3~ Analysis of Reaction Graphs and Networks o[ 
Reaction Mechanisms 

In reaction topology [3-4] a reaction mechanism is defined as an open set of 
the (R, Tc) topological space, which open set is a union of a sequence of chemical 
structures, involved either as reactant, transition structures, intermediate struc- 
tures or product. The reaction graphs, defined above, retain the most essential 
relations between such open sets, and are suitable for the analysis of reaction 
mechanisms on E. 

Graphs G(0), D(0),  GS(1) and DS(1) express the most directly some familiar 
chemical concepts. G(0) and D(0) describe the relations between stable 
molecular structures, i.e. molecules. D(0) also contains information on energy 
relations. GS(1) and D~(1) represent the relations between all molecules and 
transition structures. Whereas graphs with A = 0 and A = 1 are by far the most 
important in our analysis, most of the results will be formulated for a general A 
parameter.  Whenever the "closeness" of chemical structures is our only concern, 
then the analysis of E may be given in terms of graphs G (A) and D (A). However,  
when sequences of chemical structures, encountered along a reaction mechanism, 
are studied, then graphs G~(A) and digraphs D'(A) are more suitable for the 
analysis. In particular, one should recall that two molecules separated by a 
transition structure are not in general adjacent in G s (A), even if they are adjacent 
in G(A). This feature of G~(A) is compatible with the classical concept of reaction 
paths which explicitly involves all three structures, and does not formally allow 
tunneling. 

Consider a graph G'(A) of the energy hypersurface E. It is evident that each 
path on graph GS(A) represents a set of infinitely many paths on the energy 
hypersurface E, and each element of this set involves the same sequence of 
chemical structures. That is, the path on the graph represents a reaction mechan- 
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ism. (Unless otherwise stated, in this paper path means a path on a graph.) Since 
Gs(A) describes the symmetric strong neighbour relations between all chemical 
structures of critical point index less or equal to A, all reaction mechanisms 
involving such structures can be specified by paths in Gs(A). In the context of 
reaction mechanisms, an edge of G s (A), or equivalently, the incident vertex-pair 
r (~''~, r (~'J~ corresponds to a reaction step. A general reaction mechanism in G" (A) 
is a path composed of steps involving arbitrary A' and A" indices, the only 
restriction besides adjacency is 

A', A"---< A. (36) 

Apparently, the chemically most important reaction mechanisms are those with 
paths along which every vertex with an odd serial number has index A (~= 0. 
That is, usually only one unstable (A (i) > 0) structure is involved in a transforma- 
tion between two nearest stable (A (z) = 0) molecules along the path. 

A reaction step or a mechanism will be referred to as a A-step or A-mechanism, 
respectively, if the highest critical point index involved is A. By considering 
interconversions between unstable (A (J)> 0) structures as well, it is clear that 
every path in G'(A) corresponds to a unique general mechanisms. The set of all 
paths in G~(A) represents the set of all A'-mechanisms on E, for all A' values 
permitted by condition (36). 

An elementary reaction mechanism of index A corresponds to a vertex sequence 

r (~ , r (x'i~, r (~ (37) 

along a path, where r (~ and r (xJ), and also r (x'i) and r (~ are neighbours. Each 
minimum energy path on E is a representation of an elementary mechanism of 
index 1, where 

N~(r (~ r (1'i)) = 1, 

N ' ( r  (~ r ~ = 1. 

Each sequence of minimum energy paths on 

(38) 

(39) 

E corresponds to a unique 
1-mechanism on a graph Gs(A), h--> 1. This explains the special importance of 
GS(1), which is the simplest graph with the above property. 

The number of neighbours and their types i.e. their A indices, are crucial in 
determining the importance of a chemical structure C "~''~ in various reaction 
mechanisms. The total number of neighbours is the degree d(vi) of the correspond- 
ing vertex vi of graph G(n + 1). The total number of incident reaction steps is 
the degree d(vi) in graph GS(n + 1). The number u~(v~) of incident A-steps for 
the ith chemical structure C r'~''~ is given by 

~ (vi) = d ( v i ( 6  s (A)))  - d (v~ (G?  (A - 1)))  ( 40 )  

where graph G~(A) is defined by 

V(G~ (A)) = V(G s (A)) U {r~"i)}, (4 la) 

E(G;(A))=E(GS(A))U{(r~"'~,r~"'k)):A"<-A,~rS(r~"~,r~"'k))=l} (41b) 
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This definition implies the following interpretation: vn+:(vl) is the number of 
strong neighbour relations involving structure vi and structures in Dexcl u C :3ex~. 

Definition (40) also implies that the sum of the ux,(v~) M-step numbers for 
A' = 0, 1 . . . .  A is the degree of vg in graph G s (A): 

A 

d(v~(GS(A))) = E u,v(v~). (42) 
A ' = 0  

The total number of reaction steps of index A or less, q(GS(A)), is the number 
of edges in set E(G~(A)). The number q(G~(A)) and the numbers v,v(v~) of 
M-steps, A ' -  < A, v~ ~ V(G~(A)) are interrelated by the following 

Theorem 1: 

A 

~, Y~ vx,(vi)=2q(GS(A)). (43) 
i A ' = 0  

The proof follows directly from relation (42) and from Euler 's relation for the 
number of edges and vertices [21]. 

The distance d(vl, vj), in Gs(A), of chemical structures vl, vj ~ V(GS(A)) is the 
length of the shortest G~(A)-path between them, that is, the minimum number 
of elementary reaction steps separating vl and v i in G~(A). If there is no such 
path (consequently, GS(A) is disconnected), then d(v~, vj) = ~ by definition. 

The following concept of eccentricity e (v~) has a certain relation to the importance 
of chemical structure v~ in various reaction mechanisms. For a connected reaction 
graph G~(A) e(v~) is defined as 

e(vi)= max d(vl, vi). (44) vj~ v ( G s ( x ) )  

The radius r(G~(A)) is defined as 

r(GS(A)) = min e(vi) (45) 
v i e  V(G~(X)) 

whereas the maximum eccentricity is the diameter d(GS(A)) of G s (A): 

d(GS(A)) = max e(vi). (46) 
v ~  V(G~(X)) 

A chemical structure vi is a central structure in G~(A) if 

e(vi) = r(GS(A)). (47) 

The center of reaction graph G~(A) is the set of all central structures. Central 
chemical structures are likely to have central role in many reaction mechanisms. 

Particularly important are those chemical structures which correspond to a 
cutpoint ve of a graph G s (A), since the formal removal of vl from G s (A) increases 
the number of components of G~(A). If A and B are two blocks of G~(A), held 
together by cutpoint v~, then every A'-mechanism, A'-----A, interconverting a 
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molecule in block A and one in block B must pass through vl. The vertex - 
connectivity k (G s (h)) is the minimum number of vertices whose removal results 
in a disconnected graph. 

The reaction graph G s(h) is m-connected if 

k ( G S ( h ) )  >- m. (48) 

Elementary reaction steps corresponding to edges e k ~ E ( G S ( h ) )  which are 
bridges, have similar importance, since all h-mechanisms between fragments of 
GS(h), held together by bridge ek, must pass through ek. The edge-connectivity 
l (G  s (h)) is the minimum number of edges whose removal results in a disconnected 
graph. 

The minimum degree 8 (G s (h)) is an upper bound for both k (G s (h)) and l (G  ~ (A)): 

k (G ' (h ) )  -< I(G~(A)) -< 6(G~(A)). (49) 

Furthermore,  if the number of chemical structures and the number of elementary 
reaction steps are p and q, respectively, then 

max k(G~(h  )) = max l (GS(h )) = [2q/p], (50) 

when q - p  - 1 [213. Here  Ix] denotes the entire function, i.e. the greatest integer 
not exceeding the real number x. 

Two reaction mechanisms, interconverting chemical structures vi and v i, are said 
to be disjoint if their paths on graph Gs(A) have no chemical structures other 
than vi and v i is common. For a given vi and vj pair of molecules, the number 
of disjoint reaction mechanisms is of certain practical importance in synthesis 
planning. This number can be determined by the following 

Theorem 2: 
The m i n i m u m  number  o f  chemical  structures in G~(A), separating two non-s- 
neighbour molecules v~ and  vj, is equal to the m a x i m u m  number  o f  disjoint v~ - vj 
reaction mechanisms  in G ~ (,~ ). 

It is clear that if m chemical structures separate molecules vi and v i then there 
can exist no more than m disjoint reaction mechanisms. The proof then follows 
from Dirac's proof of Menger's theorem on disjoint paths [21]. 

There are three important  corollaries of Theorem 2: 
(1) Gs(A) is m-connected if and only if every pair of chemical structures v~, 
vj ~ V ( G  s (A)) can be interconverted into each other by at least m disjoint reaction 
mechanisms. 
(2) If V1 and V2 are two disjoint non-empty sets of chemical structures, where 
no chemical structure in V1 is an s-neighbour of any one in V2, then the maximum 
number of disjoint reaction mechanisms between V1 and V2 is equal to the 
minimum number of chemical structures separating V1 and V2. 
(3) A graph GS(,~) of at least 2m chemical structures is m-connected if and only 
if for any two disjoint sets V1 and V2 of m chemical structures each, there exist 
m disjoint reaction mechanisms between V1 and V2. 
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The local connectivity of two non-adjacent chemical structures v~ and vj is denoted 
by k(vi, vj) and is defined as the minimum number of chemical structures whose 
formal removal separates v~ and vj. From Theorem 2 it follows that 

k(G(h)) = min k(vi, vj). (51) 
vi, vje V(G(A)) 

If the maximum number of disjoint reaction mechanisms interconverting v~ and 
vj is denoted by p (v~, vj), then Theorem 2 may be re-stated as 

k(IAi, i.)])-~-/t~ (/)i,/)j), (52) 

Two reaction mechanisms interconverting chemical structures vi and vi are 
step-disjoint if their paths have no edges in common. The result for step disjoint 
mechanisms, analogous to Theorem 2, is stated as 

Theorem 3: 
For any two chemical structures vl and vj in G~(A), the maximum number of 
step-disjoint reaction mechanisms is equal to the minimum number of elementary 
reaction steps separating them in G ~ (A). 

Theorem 3 has the following interesting corollary: 
(1) G~(,~) is m-step-connected if and only if every pair of chemical structures 
vl and vj ~ V(GS(A)) can be interconverted into each other by at least m step- 
disjoint reaction mechanisms in GS(~). 

4. Theorems on Shortest Reaction Mechanisms and Reachability Matrices 

Just as the neighbour relations of all chemical structures are presented by 
elements of adjacency matrix A(G), Eq. (28), the set of all s-neighbour relations 
for chemical structures of index A', A ' -A ,  can be given in terms of elements of 
adjacency matrix A(G ~ (A)) of reaction graph G ~ (A). 

The following graph-theoretical theorem on the k-th power of adjacency matrices 
[21] is the basis for two theorems on reaction mechanisms. 

Theorem 4: 
The number wii(k) of walks of length k from vi to vj in G'(&) is equal to the i, j 
element of the kth power of adjacency matrix A(G s (A)): 

w,j(k) = Ak.(G" (A)). (53) 

This theorem, as formulated for reaction graph GS(A), is not always applicable 
directly for chemical problems since walks which are not paths on GS(&) are 
generally of lesser importance than paths. Non-path walks usually do not corres- 
pond to "economical" reaction mechanisms, since they involve repetitions of 
one or more chemical structures along the walk. For the special case of paths 
of length 2, however, the following, chemically more important result is obtained: 
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Theorem 5: 
The number pij(2) of paths of length 2 between two different chemical structures 
vi and v i in Gs(A) is equal to the i, ] (i ~ ]) element of matrix A2(G~(A)): 

Pi] (2) = A~ (G s (A)). (54) 

The proof follows immediately from the observation that for two different 
chemical structures every walk of length 2 which interconnects them, must be 
a path. Then p~i(2) = w~i(2) and Theorem 4 can be applied. In the special case of 

r(0,i) r(O,i) 
two molecules C and C , the number Pii(2) is the total number of elementary 
reaction mechanisms of index A', A' -< A, leading from one molecule to the other. 

A reaction mechanism leading from chemical structure v~ to v i is a shortest 
mechanism if it consists of the minimum number of elementary reaction steps. 
The length of a shortest reaction mechanism can be given in terms of adjacency 
matrices, as established by 

Theorem 6: 
I f  Gs(A) is a connected graph, then a shortest reaction mechanism between two 
chemical structures v~ and v i consists of k elementary reaction steps, where k is the 
smallest integer such that 

A~(GS(A)) r 0. (55) 

The proof follows from Theorem 4 and from the observation that a shortest 
walk between two chemical structures vi and v i on G~(A) is necessarily a path, 
consequently 

pij(k) = w~j(k). (56) 

Connectedness of (7 ~ (A) can also be verified by inspecting A(G s (A)), since G s (A) 
is connected if and only if no re-labeling of vertices can bring A(G~(A)) into 
block-diagonal form. In fact, any property of graph G~(A) is reflected in 
adjacency matrix A(GS(A)) due to the one-to-one correspondence between 
graphs of labeled vertices and binary square matrices of zero diagonal. 

Similar theorems are valid for adjacency matrices of digraphs D ~ (A), representing 
reaction networks on the energy hypersurface. Adjacency matrix A(DS(A)) is 
not in general symmetric matrix, as a consequence of the orientations given to 
arcs in D~(A) (Eq. 15). The outdegree od(v~) of chemical structure v~ in D~(A) 
is the number of arcs originating at v~, whereas the indegree id(vl) is the number 
of arcs leading to vi. The outdegree and indegree of vi in D~(A) can be given by 
the following sums of elements of the adjacency matrix: 

od (vi) = Z At,(D~(A)) (57) 
I 

and 

id (v,) = ~ A,~(DS(A)). (58) 
l 
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The elements of reachability matrix R(D s (h)) are defined by 

1 if there is a (directed) path in D s (h) leading from v/ to  vj 

RiJ= 0 otherwise. 
(59) 

Chemical structure vj is said to be reachable from Vi (that is, Rij = 1) if and only 
if there is a sequence 

vi = Vko, vkl . . . .  vk, = vj (60) 

of chemical structures where for each pair Vkm, Vk,,§ 

1QS(vk,~, Vkm+~) = 1 (61) 

and for the above distinguished geometries 

E(Vk,~) - E(vkm§ >-- O. (62) 

That  is, the energy values in sequence (60) of distinguished geometries form a 
monotonic non-increasing series. Along the corresponding reaction mechanism, 
each reaction step is associated with either preserving or lowering the total 
energy. If Rij = 1, such chemical reactions occur spontaneously with no activation 
energy. 

In order to investigate reaction mechanisms involving non-zero activation energy, 
we shall introduce the concept of relative and absolute E-reachability. For this 
end we shall define two digraphs, both derived from D S(h). 

Digraph D~(h, E)  is defined by the vertex set of DS(h), 

V(DS(A, E)) = V(D~(h)) (63) 

and an arc set 1 obtained by adding an arc vjvi to the arc set A(DS(A)) for every 
arc vlv i ~ A(D~(h )) where 

0 < E(vi) - E(vj) ~ E. (64) 

That  is, for each pair of chemical structures which are adjacent (with any 
orientation) in D~(h), and which differ by energy less or equal to E, there are 
two arcs with opposite orientations in A(D~(h, E)). Due to this construction 

A (D~(h ) ) c A (DS(,~, E)  ) (65) 

and 

DS(,t) c D~(h, E).  (66) 

Digraph D~(h,/~) is defined by 

V(D~(,L ft.)) -- V (D  ~ (h)) (67) 

and an arc set obtained by adding an arc vjv~ to the arc set A(DS(,~)) of D~(h) 
for every arc vivj ~ A(D~(A)) where 

0 < E (v~) - E (vj) (68) 

1 Whereas A(DS(A)) stands for the adjacency matrix, A(DS(A)) slants for the arc set. 
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and 

E(v~), E(v/) <-E. (69) 

Due to this construction 

A(D'(A))  c A(D'(A, /~)  (70) 

and 

D'(,~ )~  D~(A, ff~). (71) 

In A(DS(A,/~)) there are two arcs with opposite orientation for every arc of 
A (D s (A)) interconnecting vertices of different energy not exceeding E. 

The relative and absolute E-reachabil i ty matrices of digraph D ~ (A) are defined 
as the reachability matrices of digraphs D ~ (h, E)  and D" (h,/~): 

R(DS(A, E))  (72) 

and 

R(D'(A, E)),  (73) 

respectively. 

Their  physical meaning is as suggested by the terminology. Chemical structure 
vj is relative E-reachable  from chemical structure vi by a h'-mechanism, h'_< A, 
if and only if there is a (directed) path in D~(A, E)  from vl to vj. This implies 
that, in each reaction step along such a reaction mechanism, the activation energy 
cannot exceed the value E. 

Chemical structure vi is absolute E-reachable  from chemical structure vi by a 
h'-mechanism, h'_< h, if and only if there is a (directed) path in D'(A,/~)  from 
v~ to vj. This implies that none of the critical points rc  representing various 
chemical structures encountered along such a reaction mechanism has total 
energy larger than the value E. 

The connectedness properties of digraph D'(A)  are reflected in the relative and 
absolute E-reachabil i ty matrices. Digraph D ~ (A) is strongly connected if every 
two chemical structures vi and vj are mutually reachable. Ds(A) is unilaterally 
connected if for every two structures, at least one is reachable from the other. 
D~(A) is weakly connected if every two chemical structures are joined by a 
semipath of D'(A),  i.e. by a path of the corresponding G~(A). Digraph D~(A) is 
disconnected if it is not even weakly connected. Relative and absolute (strong, 
unilateral and weak) E-connectedness are defined analogously in terms of 
digraphs D s (h, E)  and D s (A,/~), respectively. 

The relative and absolute E-reachabil i ty matrices are E and /~ dependent,  
respectively. We are interested in those E values at which the E-reachabil i ty of 
a chemical structure v i from chemical structure vl, that is, element R~j of R, 
changes. These are the minimum energy values at which a vi -~ v i interconversion 
becomes possible in the classical sense, i.e. when excluding tunneling. This 
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E-dependence of reachability matrices represents the mathematical link between 
the theory of reaction networks and the critical level topology (R, TFc) of energy 
hypersurfaces [29] and it is directly related to the enumeration problem of 
various critical points on such hypersurfaces [30]. 

It is evident that an only (relative or absolute) weakly E-connected digraph 
D s (A) becomes (relative or absolute, resp.) unilaterally E-connected and event- 
ually (relative or absolute, resp.) strongly E-connected when the E value is 
sufficiently increased. 

Theorems analogous to Theorems 4-6 are valid for digraphs DS(h, E) and 
D'(A,/~), where ordinary walks and paths must be replaced by (directed) walks 
and paths on digraphs. In particular, the digraph version of Theorem 6 shows 
how to obtain reachability matrices R(D'(A)), R(D" (h, E)) and R(D~(A,/~)) from 
the respective adjacency matrices A(D s (h)), A(D s (h, E)) and A(D ' (h,/~)): 
(1) Ril = 1 for every i 
(2) Rij = 1 if and only if there exists k such that 

A~>0,  i~] (74) 

which construction is valid for all three types of reachability matrices. 

In the example of Fig. 4, digraph D ~ (2) of the portion of model surface of Fig. 
2 is shown, where the arcs are labeled by the energy difference between the 
incident distinguished elements. The energy values of the distinguished points 
are also given in parentheses after each vertex. The reachability matrix 
R(D s (h)) = R(D ~ (h, 0.0)) and the relative E-reachability matrices obtained from 
digraphs DS(2, 1.0) and D'(2, 2.0) are the following: 

1 

0 

0 

1 
R(D~(2)) = 

0 

1 

1 

0 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

1 0 1 0 0 0 0 

1 1 0 1 0 0 0 

1 0 1 0 1 0 0 

1 1 1 1 0 1 0 

1 1 0 1 0 0 1 

R(D~(2, 1 .0 ) )=  

1 1 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 
1 1 0 1 0 0 0 0 

0 1 1 0 1 0 0 0 

1 1 0 1 0 1 0 0 
1 1 1 1 1 0 1 0 
0 1 1 0 1 0 0 1 
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Fig. 4. Subgraphs of digraph D ' (2 )  and 
digraphs DS(2, 1 �9 0) and DS(2, 2 �9 0), 
used in the determination of relative 
E-reachability matrices of model 
potential surface shown in Fig. 2 

DS(2)  

V6(9 ) 7 , V2(2 ) , 5 V8(7 ) 

Y" ix< II 
~I v4 c~ I~ v~l I ~ 
II 

Vl(3) __ V7(7) , vs(O) 
4 7 

DS(2,1.O) 

V 6 , V 2 , V 8 

I \ v / l \ v / /  
\ 1 / \ 1  

V I . V 7 L V 3 

1.4' " , , I / \1  
Vl , V 7 L V 3 

and 

R(DS(2, 2.0))  = 

1 1 1 1 1 0 0 0 

1 1 1 1 1 0 0 0 

0 0 1 0 0 0 0 0 

1 1 1 1 1 0 0 0 

1 1 1 1 1 0 0 0 

1 1 1 1 1 1 0 0 

1 1 1 1 1 0 1 0 

1 1 1 1 1 0 0 1 

In the simple case of the two dimensional surface of the example these results 
may be obtained easily by inspection of the surface or digraph DS(2). However, 
for more complicated multidimensional cases simple inspection as an analytic 
tool rapidly becomes inapplicable and useless, and in such cases one must rely 
on graph theoretical relations between adjacency and reachability matrices which 
provide easily programmable algorithms. 

5. Summary 

Quantum chemical reaction networks are defined by utilizing topological proper- 
ties of potential energy hypersurfaces. By exploiting a one-to-one correspon- 
dence between graphs and binary matrices of zero diagonal, the fundamental 
structural properties of energy hypersurfaces, reaction mechanisms and certain 
energy relations are described in matrix-algebraic terms: by powers of adjacency 
matrices and reachability matrices. In particular, E-teachability matrices derived 
from adjacency matrices of reaction digraphs are of some importance whenever 
the feasibility of various reaction mechanisms cannot be decided by simple 
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i n s p e c t i o n  of c o m p l i c a t e d  m u l t i d i m e n s i o n a l  hype r su r faces .  F u r t h e r  w o r k  o n  
r e a c t i o n  g raphs  a n d  r e a c t i o n  t o p o l o g y  is in  progress .  
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